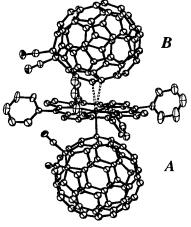


Synthesis and Crystal Structure of Ionic Multicomponent Complex: ${[Cr^{I}(PhH)_{2}]^{+}}_{2}[Co^{II}TPP(C_{60}(CN)_{2})]^{-} [C_{60}(CN)_{2}]^{-}\cdot 3(\sigma-C_{6}H_{4}CI_{2})$ Containing $C_{60}(CN)_{2}^{+-}$ Radical Anion and σ -Bonded Diamagnetic Co^{II}TPP($C_{60}(CN)_{2}$)⁻ Anion

Dmitry V. Konarev,^{*,†} Salavat S. Khasanov,[‡] Akihiro Otsuka, Yukihiro Yoshida, and Gunzi Saito^{*} Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Received March 11, 2002


Electron-transfer salts of fullerene C_{60} are of great interest due to intriguing physical and structural properties.¹ By now the salts of C_{60} have been obtained with tetrakis(dimethylamino)ethylene,^{2a} cobaltocene (Cp₂Co^{II}),^{2b} bis(benzene)chromium (Cr⁰(PhH)₂),^{2c} and some other compounds.¹ The major part of donor molecules (for example tetrachalcogenafulvalenes, porphyrins, and their metalcontaining analogues) is cocrystallized with fullerenes, yielding basically neutral complexes.³ These complexes have various packing motifs of the fullerene molecules in a crystal. In this view one would expect that the design of multicomponent complexes [D₁(D₂⁺•fullerene⁻)], where D₁ is a large structure-forming molecule and D₂ is a small molecule with strong donor properties, could be promising for the synthesis of novel ionic compounds of fullerenes with different crystal structures.

Cr(PhH)₂ is one of the most suitable donors (D₂) for the synthesis of the ionic complexes^{2c} (E^{+/0}_{1/2} of Cr(PhH)₂ = -0.72 V vs SCE,^{4a} calcd -1.12 V vs Fc/Fc⁺ (Fc: ferrocene) and E^{0/-}_{1/2} of C₆₀(CN)₂ = -0.935 V vs Fc/Fc⁺ 4b). Here we report the synthesis and structural and magnetic properties of the ionic multicomponent complex {[Cr^I(PhH)₂]•+}₂[Co^{II}TPP(C₆₀(CN)₂)]⁻[C₆₀(CN)₂]••3(o-C₆H₄Cl₂) (**1**, Co^{II}TPP = cobalt (II) tetraphenylporphyrin (D₁), o-C₆H₄Cl₂ = o-dichlorobenzene). Furthermore, we describe first time the σ -bonding of Co^{II}TPP to dicyanofullerene radical anion, resulting in diamagnetic supramolecular anion Co^{II}TPP(C₆₀(CN)₂)⁻ and the first molecular structure of C₆₀(CN)₂•⁻ radical anion in a crystal.

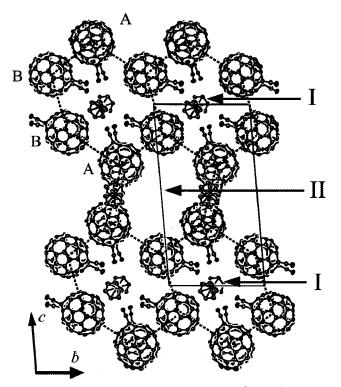
The crystals of **1** were obtained by the diffusion of hexane into $o-C_6H_4Cl_2$ solution containing Co^{II}TPP, Cr(PhH)₂, and C₆₀(CN)₂.

The main building block of 1^5 is $Co^{II}TPP \cdot (C_{60}(CN)_{2})_2$ unit (Figure 1). One $C_{60}(CN)_2$ (**A**) in the unit coordinates to $Co^{II}TPP$ by σ -type with the Co^{•••}C contact of 2.282(3) Å. This distance is longer than those for the covalent C–Co bond in alkylcobaltoamines (1.99–2.03 Å^{6a}) but is essentially shorter than the van der Waals M^{•••}C contacts in the neutral complexes of fullerenes with metalcontaining porphyrins (2.63–3.32 Å).^{3b–e} The shortened Co^{•••}C contacts for carbon atoms closest to the σ -bonded carbon are 2.99– 3.09 Å. The second C₆₀(CN)₂ (**B**) forms only shortened van der Waals contacts with Co^{II}TPP by η^2 -type (the Co^{•••}C distances of 2.789(3) and 2.928(3) Å). In contrast to the saddlelike shape of the parent Co^{II}TPP^{6b} the macrocycle is planar in **1** with the Co–N bond distances of 1.967–1.994 Å. The cobalt atom deviates by 0.113(3) Å from the mean plane of the macrocycle toward to the fullerene molecule.

The 1:1 molar ratio of $Cr(PhH)_2$ and $C_{60}(CN)_2$ in 1 yields the -1 formal charge on the $C_{60}(CN)_2$ molecules. This charged state

Figure 1. Shortened van der Waals contacts and the σ -bonding of Co^{II}-TPP with C₆₀(CN)₂⁻ (dashed and full lines, respectively).

is in good agreement with the following optical data. The IR bands sensitive to the charge transfer in $Cr(PhH)_2$ shift from 459 and 490 cm⁻¹ (the neutral state) to 417 and 460 cm⁻¹, respectively in **1** and coincide with those in $[Cr^{I}(PhH)_{2}]^{\bullet+}\cdot I^{-}$ (415 and 466 cm⁻¹).^{7a}


The most sensitive IR band (the C=C stretching mode) concerning with the charge transfer to $C_{60}(CN)_2$ shifts from 1430 cm⁻¹ (the neutral state) to 1391 cm⁻¹ in **1** similarly to that of $F_{1u}(4)$ mode of C_{60} which shifts from 1429 cm⁻¹ (the neutral state) to 1390–1394 cm⁻¹ in $\{(Ph_4X)^+\}_2[C_{60}\bullet^-]\bullet Y^-$ (X = P, As, Y = Cl, I).^{7b} The red shift of the C=N stretching mode from 2241 (the neutral state) to 2230 cm^{-1} in **1** is consistent with the red-shifts in the ionic complexes of tetracyanoquinodimethane (TCNQ)^{7c} and in the ionic [Cp₂Co^{III}]+•[C₆₀(CN)₂]•-CS₂ (2233 cm⁻¹).^{7d} In the UVvis-NIR spectrum of 1 in the KBr matrix, along with the bands of $\mathrm{Co^{II}TPP}$ at 427 and 522 nm and $\mathrm{C_{60}(CN)_2}$ at 326 nm, new bands appear in the NIR-range at 1049 nm (9.5 \times 10³ cm⁻¹) (the intramolecular transition in C60(CN)2.-, which is observed at 1019 nm in N,N-dimethylformamide solution^{7d}) and at 1205 nm (8.3 \times 10^3 cm^{-1}). The latter band may be attributed to the charge transfer either in the $Co^{II}TPP(C_{60}(CN)_2)^-$ anions or between $C_{60}(CN)_2^$ anions. Accordingly, the ionic formula of 1 is deduced to be ${[Cr^{I}(PhH)_{2}]^{\bullet+}}_{2}[Co^{II}TPP(C_{60}(CN)_{2})]^{-}[C_{60}(CN)_{2}]^{\bullet-}\cdot 3(o-1)^{\bullet+}$ $C_6H_4Cl_2$).

Compound **1** is a unique example of the cage structure with large channels accommodating $Cr^{I}(PhH)_{2}^{\bullet+}$ and $o-C_{6}H_{4}Cl_{2}$ molecules. Two types of channels with different sizes are formed along the *a*-axis (Figure 2). The channel I is occupied by the ordered $Cr^{I}(PhH)_{2}^{\bullet+}$ surrounded by six $C_{60}(CN)_{2}^{-}$ among which four molecules (2A + 2B) project negatively charged $C \equiv N$ groups to the central $Cr^{I}(PhH)_{2}^{\bullet+}$, forming several $N \cdots C(Cr^{I}(PhH)_{2}^{\bullet+})$ contacts in 3.24–3.26 Å range and two other $C_{60}(CN)_{2}^{\bullet-}$ (2B) to the $Cr^{I}(PhH)_{2}^{\bullet+}$ embedded in the neighboring channels I. The channel

^{*} Corresponding authors. E-mail: (D.V.K.) konarev@icp.ac.ru and (G.S.) saito@kuchem.kyoto-u.ac.jp. [†] On leave from Institute of Problems of Chemical Physics RAS, Chernogolovka,

[†] On leave from Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region 142432, Russia.

[‡] On leave from Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432, Russia.

Figure 2. View of the packing of $C_{60}(CN)_2^-$ and $Cr^{I}(PhH)_2^{\bullet+}$ along the a-axis. The Co^{II}TPP, o-C₆H₄Cl₂ molecules and the disordered Cr^I(PhH)₂⁺⁺ are omitted. The honeycomb network is shown by dotted lines.

II has the larger size than I because its walls are composed of six $C_{60}(CN)_2^-$ (4A + 2B) and the additional ordered $Cr^{I}(PhH)_2^{\bullet+}$. The channel II contains the disordered CrI(PhH)2++ and o-C6H4Cl2 (not depicted in Figure 2) in two crystallographically independent positions, one of which is occupied by o-C₆H₄Cl₂ only and another is shared by both CrI(PhH)2++ and o-C6H4Cl2 with the occupancy factor of 0.50 and 0.35, respectively. The fullerenes have several shortened contacts to one another (3.17-3.38 Å).

The nonbonded $C_{60}(CN)_2^{\bullet-}$ (**B**) retains both the C_{2v} symmetry and the shape of the molecule. The average bond angle for the sp³ carbons of 109° is close to the tetrahedral geometry. The lengths of the 6-6 and 6-5 bonds (except bonds with sp³ carbons) are averaged to 1.392(12) and 1.449(12) Å, respectively, and are close to those for the neutral molecule.^{4b} The retention of C₆₀(CN)2^{•-} molecular shape may be attributed to the nondegenerate LUMO orbital7d and the absence of Jahn-Teller effect. The length of the C≡N bonds are 1.141(6) and 1.152(6) Å.

The magnetic susceptibility of 1 at room temperature $(\mu_{\rm eff} = 2.91 \,\mu_{\rm B})$ is most likely defined by three noninteracting 1/2spins per formula unit (μ_{eff} of 3.00 μ_{B}) rather than by two (μ_{eff} of 2.45 $\mu_{\rm B}$). The EPR signal has g = 1.991 with line width of $\Delta H =$ 11 mT at room temperature and strongly narrows with the temperature decrease ($\Delta H = 2.6 \text{ mT}$ at 200 K). Below 180 K the signal splits into two components with $g_1 = 1.996$ and $g_2 = 1.988$ with $\Delta H = 1.6$ and 1.9 mT, respectively. After the splitting, the g-factors and line width of the components only weakly depend on temperature down to 4 K. The two components may be attributed to two different signals from $Cr^{I}(PhH)_{2}^{\bullet+8}(g_{2})$ and the resonating one (g_1) between $C_{60}(CN)_2^{\bullet-}$ and $Cr^{I}(PhH)_2^{\bullet+}$. The latter signal is characteristic of a strong exchange coupling and has the mean g-factor between those for $C_{60}(CN)_2^{\bullet-}$ (g = 1.9998)^{7d} and $Cr^{I}(PhH)_{2}^{\bullet+}$ (g = 1.9860).⁸ Thus, according to the EPR data the spins come from the $Cr^{I}(PhH)_{2}^{\bullet+}$ (two-spin, $S = \frac{1}{2}$) and the nonbonded $C_{60}(CN)_2^{\bullet-}$ (**B**, one spin, S = 1/2). Consequently, the

 $CoTPP(C_{60}(CN)_2)^-$ anions are deduced to be diamagnetic. It should be noted that the covalently bonded Co^{II}TPP•NO compound with similar electronic configuration (Co(II) (d⁷), NO (π^{*1})) is also diamagnetic and EPR silent.9

The complex 1 is a paramagnet with a negative Weiss constant $(\Theta = -2.4 \text{ K})$. This is attributed to the magnetic dilution of the paramagnetic $Cr^{I}(PhH)_{2}^{\bullet+}$ and the nonbonded $C_{60}(CN)_{2}^{\bullet-}$ by the diamagnetic Co^{II}TPP(C₆₀(CN)₂)⁻ units. The complex has roomtemperature conductivity of 4×10^{-5} S·cm⁻¹ which is characteristic of fullerene-containing salts with bulky cations.^{1c}

Thus, the synthesis of the multicomponent complex 1 allows us to study for the first time the interaction of Co^{II}TPP with fullerene radical anions. The most characteristic features of the title complex are: (1) the σ -bonding between Co and one of two C₆₀(CN)₂^{•-} (Figure 1), (2) the ionic ground state of $\{[Cr^{I}(PhH)_{2}]^{\bullet+}\}_{2}[Co^{II}TPP (C_{60}(CN)_2)^{-}[C_{60}(CN)_2]^{\bullet-\bullet}3(o-C_6H_4Cl_2)$, and (3) the cage structure built by the stack of the honeycomb network (Figure 2) with channels accommodating Cr^I(PhH)₂^{•+} and o-C₆H₄Cl₂ molecules. The σ -bonding is likely formed due to the presence of an additional electron on the π^* -level of C₆₀(CN)₂^{•-} radical anion which interacts with d_z^2 -orbital of Co^{II}TPP. As a result the unusual diamagnetic $Co^{II}TPP(C_{60}(CN)_2)^-$ anions are formed. On the whole, this work shows that $C_{60}(CN)_2^{\bullet-}$ is able to form the essentially shorter M····C contacts with metal-containing porphyrins than the neutral fullerenes.

Acknowledgment. The work was supported by the COE Research on Elemental Science No.12CE2005 and JSPS.

Supporting Information Available: Crystallographic data and crystal structure refinement of 1, synthesis and characterization of 1 including IR, UV-vis-NIR, EPR, and SQUID (PDF). This material is available free of charge via Internet at http://pubs.acs.org.

References

- (1)(a) Balch, A. L.; Olmstead, M. M. Chem. Rev. 1998, 98, 2123-2165. (b) Reed, C. A.; Bolskar, R. D. Chem. Rev. 2000, 100, 1075–1120. (c)
 Konarev, D. V.; Lyubovskaya, R. N. Russ. Chem. Rev. 1999, 68, 19–38.
- (a) Allemand, P.-M.; Khemani, K. C.; Koch, A.; Wudl, F.; Holczer, K.; Donovan, S.; Grüner, G.; Thompson, J. D. *Science* **1991**, *253*, 301–303. (b) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead M. M. In Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials; Kadish, K. M., Ruoff, R. S., Eds.; Electrochemical Society: Pennington, NJ, 1994; Vol. 24, pp 1231-1244. (c) Broderick, W. E.; Choi, K. W.; Wan, W. C. Electrochem. Soc. Proc. 1997, 14, 1102-1115.
- (3) (a) Konarev, D. V.; Lyubovskaya, R. N.; Drichko, N. V.; Yudanova, E. I.; Shul'ga, Yu. M.; Litvinov, A. L.; Semkin, V. N.; Tarasov, B. P. J. Mater. Chem. 2000, 803–818. (b) Olmstead, M. M.; Costa, D. A.; Maitra, K.; Noll, B. C.; Phillips, S. L.; Van Calcar, P. M.; Balch, A. L. J. Am. Chem. Soc. 1999, 121, 7090-7097. (c) Boyd, P. D. W.; Hodgson, M. C. Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. J. Am. Chem. Soc. 1999, 121, 10487–10495.
 (d) Konarev, D. V.; Neretin, I. S.; Slovokhotov, Yu. L.; Yudanova, E. I.; Drichko, N. V.; Shul'ga, Yu. M.; Tarasov, B. P.; Gumanov, L. L.; Batsanov, A. S.; Howard, J. A. K.; Lyubovskaya, R. N. Chem. Eur. J. 2001, 7, 2005 (2015) 2001, 7, 2605-2616. (e) Evans, D. R.; Fackler, N. L. P.; Xie, Z.; Rickard C. E. F.; Boyd, P. D. W.; Reed, C. A. J. Am. Chem. Soc. 1991, 121, 8466 - 8474
- (4) (a) Treichel, P. M.; Essenmacher, G. P.; Efner, H. F.; Klabunde, K. J. Inorg. Chim. Acta 1981, 48, 41-44. (b) Keshavarz-K, M.; Khight, B.; Srdanov, G.; Wudl F. J. Am. Chem. Soc. 1995, 117, 11371-11372
- Srdanov, G.; Wudl F. J. Am. Chem. Soc. 1995, 117, 11371–11372.
 (5) Crystallographic data for 1: C₄₂₀H₁₂₈N₁₆Cl₁₂Co₂Cr₄, triclinic, space group P1, a = 13.967(1) Å, b = 15.928(1) Å, c = 30.332(2) Å, a = 92.30(1)°, β = 100.89(1)°, γ = 103.46(1)°, V = 6419.3(6) Å³, Z = 1, ρ_{calcel} = 1.591 g cm⁻³. T = 120 K. R(F_o) = 0.084, wR (F_o²) = 0.188, GOF = 1.024.
 (6) (a) Rossi, M.; Glusker, J. P.; Randaccio, L.; Summers, M. F.; Toscano, P. J.; Marzilli, L. G. J. Am. Chem. Soc. 1985, 107, 1729–1738. (b) Strumers F. D. L. Am. Chem. Soc. 1981, 2007 = 5005.
- Stevens, E. D. J. Am. Chem. Soc. 1981, 103, 5087-5095.
- (a) Fritz, H. P.; Lüttke, W.; Stammreich, H.; Forneris, R. Chem. Ber. 1959, 92, 3246–3250. (b) Semkin, V. N.; Spitsina, N. G.; Krol, S.; Graja, A. Chem. Phys. Lett. **1996**, 256, 616–622. (c) Chapell, J. S.; Bloch, A. N.; Bryden, W. A.; Maxfield, M.; Poehler, T. O.; Cowan, D. O. J. Am. Chem. Soc. 1981, 103, 2442–2443. (d) Suo, Z.; Wei, X.; Zhou, K.; Zhang, Y.; Li, Ch.; Hu, Z. J. Chem. Soc., Dalton Trans. 1998, 3875-3878
- (8) Elschenbroich, C.; Bilger, E.; Koch, J. J. Am. Chem. Soc. 1984, 106, 4297-4299
- Wayland, B. B.; Minkiewicz, J. V.; Abd-Elmageed, M. E. J. Am. Chem. (9)Soc. 1974, 96, 2795-2801.
 - JA0203667